Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38478320

RESUMO

This study employed a genome-wide association study (GWAS) to investigate the relationship between telomere length and marginal bone loss (MBL), a marker of bone health and aging. Telomere length, a biological indicator of aging, was analyzed alongside several serum markers of bone loss. Following a screen for appropriate instrumental variables, telomere length was designated as the exposure variable. We conducted the main analysis using random-effects inverse variance weighting (IVW) and supplemented it with MR Egger, weighted median, simple mode, and weighted mode analyses, employing a total of five methods. Positive outcomes underwent scrutiny through heterogeneity analysis, horizontal multiplicity analysis, and leave-one-out plot. Subsequently, the effective gene locus was chosen for a reverse MR analysis, with positive results serving as the exposure variable. We found a causal relationship between telomere length and the expression of osteocalcin (OC), matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-12 (MMP-12), key markers of bone metabolism. Our findings suggest that telomere wear and shortening may contribute to increased activity of OC, MMP-3, and MMP-12, thus affecting bone metabolism. However, reverse Mendelian randomization analysis did not indicate a significant impact of OC, MMP-3, and MMP-12 on telomere length, implying a unidirectional relationship. Overall, this meta-analysis underscores the association between telomere length and bone loss, highlighting the importance of timing and duration of telomere wear and shortening in influencing bone metabolism.

2.
Dis Markers ; 2021: 6554480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676010

RESUMO

Astragaloside IV (AS IV) and tanshinone (TS IIA) are the main natural components of Salvia miltiorrhiza and Radix Astragali, respectively. The amalgam of TS IIA and AS IV has potential therapeutic value in many inflammation-related diseases. However, the aftereffect of TS IIA and AS IV for lumbar disc herniation is not clear. Although the function of miR-223 in the inflammation-related JAK/STAT pathway is unknown, it is particularly expressed in human degenerative nucleus pulposus cells. This study has investigated the efficacy of the combined application of TS IIA and AS IV in the treatment of intervertebral disc nucleus pulposus cells (NP cells) injured by lipopolysaccharide (LPS). After miR-223 inhibitor imitated NP cells, the state of the JAK family and STAT family was recognized by Western blotting (Western blot, WB) and reverse transcriptase quantitative polymerase chain reaction (qPCR). The shRNA lentivirus interference vector targeting the STAT family was constructed, and the NP cell line stably interfering with the STAT gene was established after transfection. The expression of TNF-α, IL-6, MMP-9, MMP-3, caspase-1, and caspase-3 was detected by lipopolysaccharide (WTNP cells), control virus NP cells, STAT downregulation NP cells, enzyme-linked immunosorbent assay (ELISA), Western blot, and qPCR, respectively. The cell survival rate was detected by flow cytometry and TUNEL staining reverse transcriptase-polymerase chain reaction (qPCR). NP cells were treated with TS IIA and AS IV which had been made into different concentrations, and then, the expression of miR-223, p-STAT1, and p-JAK families was detected by WB Western blotting and qPCR. MiR-223 selectively acts on JAK2/STAT1 pathway, increases the expression of TNF-α, IL-6, MMP-9, MMP-3, caspase3-1, and caspase-3, and induces apoptosis, which can be eliminated by silencing STAT1. TS IIA combined with AS IV could inhibit the expression of miR-223, p-STAT1, and p-JAK2 in NP cells, and they showed a dose-dependent tendency to p-STAT1 and p-JAK2. This study shows that miR-223 promotes the inflammatory response and induces cell injury of NP cells by acting on the JAK2/STAT1 pathway, and the combination of TS IIA and AS IV may protect NP cells by downregulating miR-223 and inhibiting the expression of JAK2 and STAT1.


Assuntos
Abietanos/farmacologia , Janus Quinase 2/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Degeneração do Disco Intervertebral/patologia , Janus Quinase 2/genética , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Fator de Transcrição STAT1/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...